
 

 

 

Artificial Immune System Approach for Air Combat Maneuvering 
 

John Kaneshige
*
, Kalmanje Krishnakumar

 

NASA Ames Research Center, Moffett Field, CA, USA 94035 

ABSTRACT 

Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this 

research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots 

use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a 

result, we try to capture these aspects using an artificial immune system approach. The biological immune system 

protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a 

robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, 

another critical aspect of the immune system is that it can remember how previous encounters were successfully 

defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial 

immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode 

and target commands, which represent the low-level building blocks of the parameterized system. The resulting 

command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an 

aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system 

how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy 

aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver 

selection for the purposes of air combat maneuvering. 
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1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have been demonstrated as effective platforms for performing missions requiring 

long endurance flight and operating in areas that may be too dangerous for humans. As their role expands, from remotely 

controlled to semi-autonomous and autonomous operations, challenges are presented which require the development and 

application of intelligent systems [1]. These systems must be capable of making reliable decisions under varying 

conditions. As a result, they must incorporate aspects of the experience, reasoning and learning abilities of a pilot. 

A high level of autonomy is desired for future unmanned combat systems because lethality and survivability can be 

improved with much less communications bandwidth than would be necessary for preprogrammed or remotely operated 

systems [2]. However, there are a number of technical challenges that must be addressed prior to implementation. These 

challenges include situational awareness, three-dimensional mapping, sensor and data fusion, natural language 

processing, adaptation and learning, image understanding, and human-machine cooperation [3]. The purpose of this 

research is to investigate the application of an artificial immune system to address some of the adaptation and learning 

challenges that pertain to autonomous Air Combat Maneuvering (ACM). 

ACM has been described as the art of maneuvering a combat aircraft in order to obtain a position from which an attack 

can be made on another aircraft [4]. It relies on offensive and defensive Basic Flight Maneuvers (BFMs) in order to gain 

an advantage over an aerial opponent. BFMs represent the primary maneuvers that can be viewed as the building blocks 

for ACM. They are composed of accelerations/decelerations, climbs/descents, and turns that can be performed in 

combination relative to other aircraft. Pilots use their training and experience of combat tactics, along with their 

knowledge of aircraft capabilities, to determine which BFMs to perform and how to manipulate them [5]. 

A biological immune system performs a similar role as it protects the body against infectious agents. In this case, 

intruder aircraft represent the antigens (or problems) characterized by their relative positions and velocities. Maneuvers 

represent the antibodies (or solutions) composed of commonly used BFMs. An artificial immune system is used to 
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construct the maneuvers that are necessary for responding to different air combat situations. This is accomplished by 

emulating the adaptive capabilities of the biological immune system using a combination of genetic and evolutionary 

algorithms.  Another critical aspect of the biological immune system is that it possesses strong memory retention 

characteristics. It can remember how previous encounters were successfully defeated so it can respond faster to similar 

situations in the future. This is especially critical for ACM, where split-second decisions can mean the difference 

between successful and unsuccessful encounters. The artificial immune system emulates this ability by establishing a 

database of successful solutions, and categorizing them according to their problem-to-solution mapping characteristics. 

This mapping can be further strengthened over time. The equivalent of vaccinations can be provided through the use of 

training sets to introduce the artificial immune system to a variety of problems. This represents the equivalent of the 

training pilots receive in order to gain the experience necessary for making quick decisions under combat situations. 

This paper contains an overview of the immunized maneuver selection methodology, a detailed description of the 

implementation, and some test results from simulations evaluating one-verses-one maneuvering of similar aircraft. Since 

this research was primarily focused on the adaptation and learning challenges of autonomous ACM, it was assumed that 

relative positions and velocities of intruders were known. Furthermore, it was also assumed that human operators, or 

other intelligent systems, would be responsible for making strategic oriented decisions such as selecting attack 

formations, determining pre-attack positioning and engagement/disengagement criteria. 

2. METHODOLOGY 

Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external 

attacks. A biological immune system can be thought of as a robust, adaptive system capable of dealing with an enormous 

variety of disturbances and uncertainties. During the generation of the immune response, the system receives continuous 

feedback from the antigen-antibody complex resulting in a generation of an increasingly specific antibody response. 

This represents a learning paradigm that develops solutions that continually increase in accuracy. The artificial immune 

system models the search for a solution after the generation of an immune response wherein the optimal solution is 

achieved by rapid mutation and recombination of a genetic representation of the solution space. In this case, genes are 

represented by a finite number of discrete building blocks that can be thought of as pieces of a puzzle, which must be put 

together in a specific way to neutralize, remove, or destroy each unique disturbance the system encounters. For ACM, 

these building blocks consist of BFMs that must be combined and manipulated during immunized maneuver selection. 

2.1 Biological Immune System 

The adaptive response of the biological immune system is driven by the presence of a threat. Cells that most effectively 

nullify that threat receive the strongest signals to replicate. The basic components of the immune system are white blood 

cells, or lymphocytes, which are produced in the bone marrow. Some lymphocytes only live for a few days, so the bone 

marrow is constantly making new cells to replace the old ones in the blood. There are two major classes of lymphocytes: 

B-cells, which mature in the bone barrow; and T-cells, which travel through the bloodstream to the thymus where they 

become fully developed as either Helper T-cells or Killer T-cells.  

Once B-cells are released into the bloodstream they perform the roll of immune surveillance. Immune recognition is 

based on the complementarity between the binding region of B-cell receptors and a portion of the antigen called an 

epitope. B-cell receptors are essentially non-soluble antibodies that are attached to the B-cells. While all the receptors on 

a particular B-cell are the same, the unique genetic makeup of each B-cell that is produced in the bone marrow ensures 

that the receptors from one B-cell to another will be different. 

Figure 1 shows a depiction of the immune response when antigens invade the body. B-cells that are able to bind to 

antigen become stimulated by Helper T-cells (not shown). Then they begin the repeated process of cell division (or 

mitosis). This leads to the development of clone cells with the same or slightly mutated genetic makeup. B-cells with the 

same genetic makeup will have identical receptors. However some B-cells will become mutated, and thus have slightly 

modified receptors. This results in the creation of a new B-cell that might have an increased affinity for the antigen. This 

phenomenon is called clonal selection because it is the antigen that essentially selects which B-cells are to be cloned [6]. 

This will eventually lead to the production of plasma cells and memory cells. Plasma cells mass produce and secrete 

soluble B-cell receptors that are now called antibodies. These antibodies bind to other antigen to neutralize and mark 

them for destruction by other cells. Some memory cells can survive for long periods of time by themselves, while other 

memory cells form a network of similar cells to maintain a stable population. This helps to keep the immune system from 

extinguishing itself once the antigen has been completely removed. 



 

 

 

 

Fig. 1. Immune System Response 

Another function of the B-cells is that they present pieces of antigen, which have invaded cells in the body, to Killer T-

cells (also not shown). Killer T-cells destroy the body’s own infected cells to prevent them from reproducing and 

releasing a fresh crop of antigen. However, an autoimmune attack can occur if the immune system responds against 

substances that are normally present in the body. To protect against this, T-cells undergo a censoring in the thymus, 

where only the ones that do not react against self-proteins manage to survive. The rest are destroyed. This principle of 

“non-matching” based selection is referred to as negative selection. 

2.2 Artificial Immune System 

The artificial immune system combines a priori knowledge with the adapting capabilities of a biological immune system 

to provide a powerful alternative to currently available techniques for pattern recognition, learning and optimization [7]. 

It uses several computational models that are based on the principles of the biological immune system. The 

computational models that are used in this approach are: Bone Marrow Models, Negative Selection, Clonal Selection 

Algorithm, and Immune Network Model. 

The usability of these models is preceded by the assumption that some understanding of the problem exists. The 

available knowledge can then be incorporated into the respective computational models, to be used either individually or 

in combination. 

Bone Marrow Models 

Antibodies and B-cells can be thought of synonymously, since B-cell receptors are essentially antibodies that are still 

attached to the B-cells. As a result, antibodies can be viewed as being produced from the bone marrow. Bone marrow 

models incorporate the use of gene libraries to create antibodies through a random concatenation of genes. These genes 

represent building blocks that have been predetermined, using a priori knowledge, to be pieces if the puzzle that can be 

put together to form a solution. These building blocks can be simple or complex, and the genetic makeup of the 

antibodies can be represented as simple binary strings or by more complicated expressions. 

Negative Selection 

The process of selecting cells based upon self-nonself discrimination is carried out using the principles of negative 

selection. In this case, a priori knowledge is used to create detectors that can identify characteristics that would be 

detrimental for a given situation. A non-matching characteristic discriminator is then used to ensure that only antibodies 

that do not possess those characteristics are allowed to pass from the bone marrow. The remaining ones are destroyed 

before ever joining the antibody population in the bloodstream. 



 

 

 

Clonal Selection Algorithm 

A distinct difference between biological and artificial evolution is the time scales. The goal of the clonal selection 

algorithm is to find the most suitable member of a population in a very short period of time. This is accomplished by 

using selection, cloning, and maturation operators to perform the tasks of discovering and maturing good antibodies 

from the population in the blood stream. The selection operator uses a fitness function to select the best group of 

antibodies for a given antigen. The cloning operator is a process in which antibodies with better performance are given a 

higher probability of reproduction. This reproduction can take the form of creating and manipulating copies of an 

antibody, or by using genetic operators such as standard or uniform crossover on a pair of antibodies [8]. The maturation 

operator enhances the ability of the algorithm to tune antibodies in the population. This is performed by the occasional 

alteration of a particular part of an antibody using a method called hypermutation, or high levels of mutation. 

Together, these three operators provide an effective mechanism for searching complex spaces. An algorithm is outlined 

below: 

(1) Generate an antibody population either randomly or from a library of available solutions. 

(2) Select the n best performing antibody population by evaluating a performance index. 

(3) Reproduce the n best individuals by cloning the population. 

(4) Maturate a percentage of the antibodies by hypermutation. 

(5) Re-select the best performing antibody population. 

(6) Stop if an antibody is satisfactory; otherwise continue again from (1). 

Immune Network Model 

The immune network model represents the equivalent of memory cells that form a network to maintain a stable 

population in the blood stream. Frequent encounters with similar antigen can result in larger more developed networks. 

In this case, a database is used to store successful antibodies and their corresponding problem-to-solution mappings. 

This is accomplished by mapping each antibody to the characteristics of the antigen that it neutralizes. When a new 

antigen enters the body, its characteristics are matched against the strengths of antibodies in the database to select good 

candidates for seeding the initial population. As the problem-to-solution mappings grow over time, the likelihood that 

good candidates will be selected will increase. This results in less time required to find a solution. 

The database can be initialized off-line using training sets, or by inserting manually constructed antibodies. Alternate 

problem solving methods can also be used to generate candidate solutions for a particular situation. These candidates 

would then be translated into antibodies and released into the bloodstream. This provides a powerful means for 

integrating different techniques in a competitive and complementary fashion. For example, different heuristic approaches 

can be used to generate additional solutions, which could then be tuned through the process of clonal selection. 

2.3 Immunized Maneuver Selection 

Figure 2 contains a system level diagram of the artificial immune system’s computational models, along with the a priori 

knowledge that applies it to immunized maneuver selection. In terms of an immune system metaphor, intruder aircraft 

can be viewed as antigens, whose epitopes are expressed in terms of their relative positions and velocities. B-cells can be 

viewed as the vessels that carry the antibodies, which in turn represent maneuvers that are used in response to the threat. 

Each maneuver consists of a sequence of autopilot mode and target commands, and the scheduling time for each 

command. These autopilot commands represent the basic building blocks that are stored within the gene libraries. These 

libraries also contain more complex BFM building blocks that have been manually constructed to provide effective 

autopilot command sequences. Maneuvers are generated through the random selection and concatenation of basic and 

BFM building blocks. The genetic representation of a simple maneuver with only one autopilot command is expressed in 

terms of a single binary string. More complex maneuvers with multiple autopilot commands are expressed in terms of 

multiple binary strings that are linked together. 



 

 

 

 

Fig. 2. Immunized Maneuver Selection 

Once maneuvers have been randomly generated, they are assessed for negative characteristics. Non-matching 

characteristic discriminators are used to select maneuvers that do not contain these characteristics for survival. This helps 

to speed up the process of finding a solution by eliminating the need to evaluate poor candidate maneuvers during clonal 

selection. The evaluation process incorporates autopilot mode dependent models to predict the flight path of the aircraft 

throughout each maneuver. These models incorporate time-constants and rate limits associated with each autopilot 

mode, in order to update the aircraft’s state without having to rely explicitly on fast-time simulations. A cost function is 

used to evaluate the performance index of each maneuver by assessing the aircraft’s predicted state against specified 

ACM objectives. These objectives are expressed in terms of weighted parameters that incorporate both rewards and 

penalties. Rewards are indicated by a negative cost, while penalties are indicated by a positive cost. For example, a large 

reward may be given for acquiring a firing position on an intruder. Conversely a large penalty may be given for being in 

the firing position of another intruder. When a successful maneuver is found, it can be stored in a maneuver database for 

future use.  

3. IMPLEMENTATION 

This section describes a Tactical Immunized Maneuvering System (TIMS) that uses artificial immune system approach 

to construct maneuvers. These maneuvers represent motion-based plans that can be expressed in terms of autopilot 

command sequences. Figure 3 presents an overview of the TIMS architecture. The tactical objectives correspond to 

weighted parameters in a cost function that reflect both desirable and undesirable aircraft states. Maneuver selection is 

performed using a library of artificial immune system algorithms to select, modify and tune maneuvers that have been 

randomly generated or retrieved from a maneuver database. Once appropriate maneuvers have been generated, the 

corresponding autopilot modes and targets are sent to a tactical autopilot system for execution. 

 

Fig. 3. Tactical Immunized Maneuvering System 



 

 

 

The tactical autopilot system is based upon a neural flight controller and auto-gain scheduling guidance system [9]. 

However, this autopilot has been enhanced with additional body-axis modes and an aggressiveness factor for enabling 

high performance maneuvers. The command interface has also been modified to process mode and target sequences. The 

direct adaptive tracking neural flight controller provides consistent handling qualities, across flight conditions and for 

different aircraft configurations. The guidance system takes advantage of the consistent handling qualities in order to 

achieve deterministic outer-loop performance. Automatic gain-scheduling is performed using frequency separation, 

which is based on the natural frequencies of the neural flight controller’s specified reference models. The aggressiveness 

factor is used to limit the percentage of allowable stick and pedal deflections that the guidance system can command. 

These limits are then propagated throughout the guidance system in the form of computed gains and command limits. 

3.1 Maneuver Prediction 

During BFMs, the actions pilots take can be approximated by piece-wise linear or piece-wise constant commands, and 

the switching between commands [10]. The interconnection of a finite number of commands can be used to generate 

motion-based plans that can exploit the full maneuvering capabilities of the aircraft [11]. As a result, BFMs can be 

represented by sequences of autopilot mode and target commands and the time to wait after each command is executed. 

Table 1 contains a description of the autopilot commands, along with their possible target values and wait times. Also 

included in the table are the time-constants, or tau (!), and rate limits that are used to model each command. 

Table. 1. Autopilot Commands 

# Command 

(units) 

Description Target 

Ranges 

(units) 

Wait 

Ranges 

(sec) 

Tau 

(sec) 

Rate 

Limits 

(units/sec) 

0 wait (sec) Wait: commands the autopilot to wait before 

executing the next command in the queue 

n/a 1 – 60  n/a n/a 

1 bank (deg) Bank: commands the vehicle to capture and 

maintain a bank angle 

+/- 63.3 1.2 – 7.1 1.2 + 57.3 

- 57.3 

2 dhdg (deg) Delta Heading: commands the vehicle to 

capture and maintain a heading relative to the 

heading at the time the command is issued 

+/- 90 4.9 – 68.7 4.9 + 2.0* 

- 2.0* 

3 fpa (deg) Flight Path Angle: commands the vehicle to 

capture and maintain a flight path angle 

+/- 45  4.7 – 34.6 4.7 + 8.3* 

- 4.1* 

4 dalt (ft) Delta Altitude: commands the vehicle to 

capture and maintain an altitude relative to the 

altitude at the time the command is issued 

+/- 10,000 14.2 – 137.7 14.2 + 150 

- 150 

5 thr (%) Thrust: commands the throttle(s) to move to a 

percentage of the maximum setting(s) 

0 – 100 1.0 – 10.0 1.0 + 20 

- 20 

6 droll (deg) Delta Roll: commands the vehicle to roll a 

certain number of degrees in the body-axis 

(computed by integrating body-axis roll rate) 

+/- 180 1.2 – 9.1 1.2 + 57.3 

- 57.3 

7 dpitch (deg) Delta Pitch: commands the vehicle to pitch a 

certain number of degrees in the body-axis 

(computed by integrating body-axis pitch rate) 

+/- 360 1.6 – 95.6 1.6 + 8.3* 

- 4.1* 

* Computed for a true airspeed of ~800 feet/sec (corresponding to indicated airspeed of 350 knots @ 20,000 feet) 

 

Figure 4 shows an example of a Half Cuban Eight maneuver that was performed on a simulated F-16 aircraft using a 

sequence of commands to (1) increase to maximum thrust and then wait for airspeed to increase; (2) maintain zero roll 

rate and control pitch rate (up to maximum normal acceleration) for 225 degrees (in the body-axis) and then allow the 

G’s to unload; (3) bank  (from –180 degrees) to zero degrees and then wait for the aircraft to come to wings level; and 

(4) level off to capture an altitude. The actual command sequence for this maneuver was: “thr 100; wait 30; droll 0; 

dpitch 225; wait 30; droll 180; wait 10; fpa 0; wait 10”. While this maneuver was constructed manually using a trial-

and-error method, the maneuver selection process uses a similar approach by incorporating models to predict the state of 

the aircraft throughout the maneuver. The accuracy of these predictions is demonstrated by the modeling points (*), 

which overlay the trajectory of this aerobatic maneuver. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Half Cuban Eight Maneuver 

In order to perform iterative predictions as fast as possible, the models are simplified by determining the minimum 

number of points required to sufficiently model each autopilot command. To accomplish this, the modeling of each 

command is subdivided into a transitional and steady state phase. The transitional phase is modeled after a first order 

response with a rate limit. The steady state phase is modeled by propagating the states. While the shortest possible time 

to model the transitional phase was determined to be one time-constant (which corresponds to the minimum wait time in 

Table 1), the desired duration was three times the time-constant (or 3!) plus some additional time allocated for 

encountering potential rate limits. Therefore the duration of the transitional phase (Ttrans), for an arbitrary state (X) that is 

commanded to a value (Xc) with a rate limit (+/- Xdotmax), can be computed as 

 

! 

T
trans

= 3" +
Xc # X

Xdotmax
 (1) 

Using equation (1), the longest possible time to model the transitional phase (which corresponds to the maximum wait 

time in Table 1) can be determined using the target range in place of the commanded verses actual state (Xc-X). Since at 

least two modeling points were determined to be necessary for modeling each time-constant interval, the corresponding 

time-step ("T) is equal to half of the time-constant (or !/2). As a result, the number of modeling points (Ntrans) required 

for computing the transitional phase can be computed as 
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The steady-state phase is modeled in a similar fashion, however there are no controlled state that needs to be updated. As 

a result, the steady state phase can be modeled with a minimum of two points, and can have a much larger time-step. 

When computing states over a step-size, Earth-axis modes are propagated by maintaining bank and flight path angles. 

Additional logic is also incorporated to model the autopilot’s recovery response in situations, such as reaching normal 

acceleration limits, where the attitude is no longer capable of being maintained. Body-axis modes are propagated by 

maintaining pitch and roll body-axis rates. In both cases the heading, airspeed, altitude and position are updated. 

The predicted modeling points verses actual simulation data, for the Half Cuban Eight maneuver displayed in Figure 4, 

demonstrates how significantly more points are necessary to compute transitional phases. The final predicted position at 

the end of the maneuver was only off laterally by 300 feet, and ahead by about 10,000 feet (or roughly 10 seconds). The 

primary difference was that the predicted indicated airspeed was faster by approximately 135 knots, which resulted in a 

predicted altitude that was lower by almost 2,400 feet.  

3.2 Maneuver Assessment 

Once maneuvers can be adequately predicted, their performance can be evaluated against a cost function. The cost 

function is expressed in terms of weighted parameters, which represents rewards (negative costs) and penalties (positive 

costs) relative to tactical objectives. The performance index of a maneuver is computed by adding up all of the rewards 



 

 

 

and penalties, based upon the predicted states of the aircraft and intruder. Table 2 contains an overview of the rewards 

and penalties that were incorporated into the cost function. They were organized into large (+/- 1000), medium (+/- 100), 

and small (+/- 10) categories. The large category was incorporated to ensure that the safety of the aircraft. The medium 

category represented the primary tactical objectives. Meanwhile the small category was used to influence the 

optimization process. 

Table. 2. Cost Function Implementation 

Category Description Variable Definition(s) Performance Index Calculation  

Medium 

Reward 

Point laterally to the intruder "bearingtgt = bearing 

relative to intruder (deg) 

! 

"100 # 1" $bearingintruder 180( )  

Medium 

Reward 

Pointing vertically to the 

intruder 

"fpatgt = flight path angle 

relative to intruder (deg) 

! 

"100

1+ #fpaintruder 90( )
 

Medium 

Reward 

Within firing distance of the 

intruder (gun range of 3000 feet) 

"disttgt = distance to 

intruder (feet) 

! 

"100

1+ #dist
intruder

" 3000 3000( )
 

Small 

Reward 

Staying close to desired 

cornering velocity 

ias = indicated airspeed 

(knots) 

! 

"10

1+ ias" 350 100( )
 

Large 

Penalty 

Flying outside of desired flight 

condition (below 5000 feet)* 

alt = altitude (feet) 

! 

min 1000,max 0, 1000 "
5000# alt

5000

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
)  

Large 

Penalty 

Flying outside of desired flight 

condition (above 40000 feet)* 

alt = altitude (feet) 

! 

min 1000,max 0, 1000 "
alt # 40000

10000

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
)  

Large 

Penalty 

Flying outside of desired flight 

condition (slower than 250 

knots)* 

ias = indicated airspeed 

(knots) 

! 

min 1000,max 0, 1000 "
250# ias

250

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
)  

Large 

Penalty 

Flying outside of desired flight 

condition (faster than 600 

knots)* 

ias = indicated airspeed 

(knots) 

! 

min 1000,max 0, 1000 "
ias# 600

200

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
)  

Medium 

Penalty 

Lateral pointing of the intruder "bearingac = bearing 

relative to aircraft (deg) 

! 

"100 # 1" $bearingac 180( )  

Medium 

Penalty 

Vertical pointing of the intruder "fpaac = flight path angle 

relative to aircraft (deg) 

! 

"100

1+ #fpaac 90( )
 

Small 

Penalty 

Maneuver duration shorter than 

30 seconds 

time = maneuver duration 

(sec) 

! 

max 0,10 " 30# time( )( )  

Small 

Penalty 

Maneuver duration longer than 

60 seconds 

time = maneuver duration 

(sec) 

! 

max 0,10 " time# 60( )( )  

Small 

Penalty 

Insufficient time to model 

transitional phase for individual 

autopilot commands* 

Ttrans = duration of 

transitional phase (sec) 

wait = wait time (sec) 

tau = time-constant (sec) 

! 

max 0,10 "
T
trans

# wait

3 " tau

$ 

% 
& 

' 

( 
)  

* Computed at the end of each autopilot command (verses just at the end of the maneuver) 

 

For this evaluation, the medium rewards were issued for obtaining a firing position on the intruder aircraft by the end of 

the maneuver. The corresponding medium penalty was assessed for being in the firing position of the intruder, however 

the distance penalty was not incorporated since it would only serve to cancel the corresponding reward. The small 

penalties consisted of time factors to encourage maneuvers in the 30-60 second range, and to ensure that sufficient time 

was allocated for waiting after issuing an autopilot command so that the transitional phase could be accurately modeled. 

Large penalties were assessed for flying outside of a defined flight envelope. While many of these values were notional, 

they were incorporated as a means of determining their impact. In the event of achieving a successful firing position, 

three medium level rewards would be issued. As a result, a maneuver can be considered completely successful when the 

performance index approaches -300. This was one of the methods used to determine an exit criterion during the process 

of maneuver selection. 



 

 

 

3.3 Maneuver Selection 

The genetic representation of an autopilot command is expressed in terms of a binary string, which is stored in a 32-bit 

word. Three bits (24-27) are used to identify eight autopilot command #’s (in Table 1).  The target and wait ranges for 

each command (also in Table 1) are divided into eight different regions. Three bits (20-22) are used to identify the target 

regions, and three bits (16-18) are used to identify the wait regions. Finally, each region is subdivided into 256 different 

parts to provide the necessary resolution for computing precise target values and wait times. Eight bits (8-15) are used to 

express the precision factor for each target region, and eight bits (0-7) are used to express the precision factor for each 

wait region. The remaining seven spare bits are ignored. 

Once the binary string for an autopilot command has been established, it can be linked with other binary strings to form 

more complex maneuvers. For this evaluation, a maximum of 10 autopilot commands were allowed per maneuver. The 

maneuvers were constructed through the random generation and concatenation of autopilot commands and manually 

constructed BFMs. Only a select number of BFMs were constructed for this evaluation. Table 3 contains a sample of the 

BFMs, along with their corresponding genetic representations. 

Table. 3. Sample Basic Flight Maneuvers 

Name Command Genetic Representation  

Right S-Turn 

(flat scissor) 

bank 60; wait 4.7; wait 5.0; bank -60; 

wait 4.7 

00000001011101000100111101001010 

00000000000000000000000000110110 

00000001000001000001010101001010 

Split-S droll 180; wait 6.8; dpitch 180; wait 26.5 00000110011101010110010001000000 

00000111011000100000000000001100 

Left Horizontal Turn 

(low yo-yo) 

droll -90; wait 5.2; dpitch 90; wait 15.7; 

droll 135; wait 6.0; dpitch 45; wait 10.3 

00000110001001000000000000000011 

00000111010100010000000000010100 

00000110011101000000000001010100 

00000111010000000011001001001010 

CW Vertical Turn 

(high yo-yo) 

dpitch 90; wait 15.7; droll 90; wait 5.2; 

dpitch 180; wait 26.5; droll 90; wait 5.2; 

dpitch 90; wait 15.7; droll 90; wait 5.2 

00000111010100010000000000010100 

00000110011001000000000000000011 

00000111011000100000000000001100 

00000110011001000000000000000011 

00000111010100010000000000010100 

00000110011001000000000000000011 

1/3 CCW Oblique Turn 

(rolling scissor) 

dpitch 45; wait 10.3; droll -120; wait 5.7;  00000111010000000011001001001010 

00000110000101000010000100110101  

 

For this evaluation, a population of 100 maneuvers was initially selected and maintained throughout the selection, 

cloning and maturation processes. Unless a maneuver with an “acceptable” performance index (PI < -280) was found, a 

maximum of 100 generations would be computed before returning the best available maneuver in the population. 

Initial Selection Process 

The initial selection process consisted of randomly generating maneuvers from autopilot commands and BFMs, and by 

selecting maneuvers from the maneuver database. The maneuver database contained 500 successful maneuvers that were 

generated off-line using training sets that varied the relative altitude (+/- 10000 ft), flight path angle (+/- 10 deg/sec), 

heading (+/- 180 deg), distance (0-10 nm) and bearing (+/- 180 deg) of the intruder. When a successful maneuver was 

found, it was placed into the database along with the corresponding relative position and velocity characteristics. Before 

the maneuver database is initially accessed, the strength of each maneuver is assessed by comparing the characteristics 

of the maneuver against those of the current situation. The differences are weighted and added together to compute the 

corresponding strength index. These strengths are then sorted and used to randomly select maneuvers from the database, 

using a normal distribution to give stronger maneuvers a higher probability of selection. To provide the greatest chance 

of success, the maneuver with the best strength index is automatically inserted into the initial population. To preserve 

continuity, the remaining portion of the currently executing maneuver is also placed into the initial population. Once the 

maneuvers have been placed into the population, they are evaluated against the cost function and sorted according to 

their performance index. 



 

 

 

Cloning Process 

During the cloning process, the bottom 25% of the population is “replaced” by offspring produced through genetic 

mutation [8]. This involves using a normal distribution to randomly select maneuvers from the population. Then a copy 

of each selected maneuver is subjected to: (1) the insertion of an autopilot command, randomly generated maneuver, or 

maneuver selected from the maneuver database; (2) the removal of an autopilot command; (3) standard or uniform bit 

level crossover operators; or (4) standard or uniform custom crossover operators. The custom crossover operators 

involved the swapping of modes, target and/or wait regions, and precision factors instead of individual bits. 

Maturation Process 

During the maturation process, the top 10% of the population is matured through random evolution. This involved 

subjecting a copy of a maneuver to the random replacement of target and/or wait regions, or precision factors for each 

autopilot command in the maneuver. Then the maneuver is evaluated and compared against the original maneuver. If 

there is an improvement in the performance index, then the original maneuver is replaced. 

Re-Selection Process 

During the re-selection process, the middle 65% of the population is at risk of being replaced by “newcomers” that are 

generated in a fashion that is similar to initial selection. The primary difference is that the newly generated maneuvers 

have to survive the process of negative selection. This is accomplished by evaluating the performance of each new 

maneuver to determine whether or not they exceed the performance of the bottom 25% of the population. Maneuvers 

that would fall into the bottom 25% category are deleted. This is because they would have little chance of survival 

beyond the next cloning process. However, maneuvers that would not fall into the bottom 25% category survive by 

replacing one of the maneuvers in the middle 65% of the population. This is performed even if the new maneuver does 

not exceed the performance of the maneuver it is going to replace. This is because the addition of the new maneuver can 

provide a level of diversity into the population. 

4. RESULTS 

Simulation tests were performed to evaluate one-verses-one maneuvering of similar aircraft using a high fidelity model 

of an F-16 aircraft [12]. The aircraft was initialized flying straight and level at an altitude of 20,000 feet and with an 

indicated airspeed of 350 knots. A Dryden turbulence model was used to provide light turbulence with RMS and 

bandwidth values representative of those specified in Military Specifications Mil-Spec-8785 D of April 1989. The Earth 

atmosphere was based on a 1976 standard atmosphere model. 

4.1 Convergence Test 

One of the driving factors behind the selection of the population size and number of generations to compute was so that 

solutions could be found within 1-2 seconds. To ensure that the specified number of generations was sufficient, the rate 

of convergence in the population was evaluated. Figure 5 demonstrates the results from one of the more difficult 

convergence tests, where the aircraft was initialized far away from the intruder so that the performance index was less 

responsive to differences between maneuvers. 

 

 

 

 

 

 

 

 

 

Fig. 5. Convergence Test 



 

 

 

The best performance index (Best PI) in the population converges quickly to a solution, and appears to go through a 

slight maturation process after 40 iterations. This may be an indication that the number of generations could potentially 

be decreased even further. However, the performance index that is used as the cutoff point for negative selection (Cutoff 

PI) also converges very quickly. This may be an indication that there is not enough diversity in the population, since 

only a few randomly generated maneuvers manage to survive the process of negative selection after 20 iterations. 

4.2 Static Tests 

Monte Carlo testing was perfomed in order to evaluate the effectiveness and accuracy of the maneuvers. Test cases 

consisted of the same intruder flying eastwards, straight and level at 20000 feet. The aircraft was also initialized flying 

straight and level, but in random directions and at different positions and altitudes around the intruder. Figure 6 presents 

10 test cases that demonstrate the effectiveness of the predicted maneuvers. However, in some test cases (such as #7) the 

prediction does not match the simulated trajectory. This is especially problematic for situations where the aircraft pitches 

up beyond 90 degrees (as in the Half Cuban Eight maneuver), where insufficient airspeed can result in unmodeled 

dynamics that can significantly alter the final state. Table 4 contains the maneuver commands for each test case. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Static Tests 

Table. 4. Maneuver Commands Generated during Static Tests 

Test Case Command 

1 bank -61.88; wait 4.98; wait 30.20; fpa -6.30; wait 21.96 

2 bank 60.93; wait 6.04; droll 175.50; wait 9.22; dpitch 297.00; wait 37.38 

3 bank 37.66; wait 6.20; wait 53.58 

4 bank 59.98; wait 3.96; fpa 6.19; wait 27.49; thr 75.00; wait 8.68 fpa -42.75; wait 19.88 

5 dpitch 269.10; wait 32.87 

6 thr 7.00; wait 3.63; bank 63.30; wait 6.84; wait 39.50 
7 dpitch 196.20; wait 51.86; bank 61.72; wait 7.27 
8 dbank 62.83; wait 6.29; wait 30.20; fpa 8.55; wait 22.22 
9 bank -21.21; wait 6.17; wait 20.03; bank 33.23; wait 6.04; fpa -4.61; wait 27.04 
10 fpa -10.12; wait 33.33; fpa 28.12; wait 26.60 

 

4.3 Dynamic Tests 

Dynamic testing was performed by allowing maneuvers to be re-computed every five seconds, in response to changes in 

the intruder’s trajectory. During the lateral tests, the intruder performed a series of (60 deg) bank maneuvers in an 

approximation of the “flat scissors” technique. During the coupled (lateral and vertical) tests, the intruder performed a 

series of (60 deg) bank and (5 deg) flight path angle maneuvers, in a pseudo approximation of the “rolling scissors” 

technique. Figure 7 presents results from a lateral test case (on the left), and a coupled test case (on the right). In both 

cases, circles have been placed at 5-second intervals along the trajectories. In general, the lateral tests were found to 



 

 

 

produce fairly deterministic results. However, the coupled tests often resulted in vertical overshoots caused by over 

aggressiveness. This could potentially be traced back to the lack of derivative terms in the cost function. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Dynamic Tests 

5. CONCLUSIONS 

The purpose of this study was to evaluate the effectiveness of using an artificial immune system approach for ACM. Test 

results demonstrate the potential of immunized maneuver selection, in terms of constructing effective motion-based 

trajectories over a relatively short (1-2 sec) period of time. In most cases, the trajectories were adequately predicted with 

minimal computation to enable iterative calculations.  However, further research is still required in terms of improving 

the cost function implementation, and tuning convergence rates so that a diverse population is maintained. Additional 

development is also necessary to improve aspects of the predictive modeling, and to manage the execution of 

recalculated maneuvers during real-time operation.  
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